Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
2.
Med Oncol ; 39(3): 32, 2022 Jan 20.
Article in English | MEDLINE | ID: covidwho-1633699

ABSTRACT

To investigate the effects of isolated SARS-CoV-2 spike protein on prostate cancer cell survival. The effects of SARS-CoV-2 spike protein on LNCaP prostate cancer cell survival were assessed using clonogenic cell survival assay, quick cell proliferation assay, and caspase-3 activity kits. RT-PCR and immunohistochemistry were performed to investigate underlying molecular mechanisms. SARS-CoV-2 spike protein was found to inhibit prostate cancer cell proliferation as well as promote apoptosis. Further investigation revealed that anti-proliferative effects were associated with downregulation of the pro-proliferative molecule cyclin-dependent kinase 4 (CDK4). The increased rate of apoptosis was associated with the upregulation of pro-apoptotic molecule Fas ligand (FasL). SARS-CoV-2 spike protein inhibits the growth of LNCaP prostate cancer cells in vitro by a two-pronged approach of downregulating the expression of CDK4 and upregulating FasL. The introduction of SARS-CoV-2 spike protein into the body via COVID-19 vaccination may have the potential to inhibit prostate cancer in patients. This potential beneficial association between COVID-19 vaccines and prostate cancer inhibition will require more extensive studies before any conclusions can be drawn about any in vivo effects in a human model.


Subject(s)
COVID-19 Vaccines/immunology , Cell Proliferation/physiology , Prostatic Neoplasms/immunology , Prostatic Neoplasms/pathology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Viral/immunology , Apoptosis/immunology , COVID-19/immunology , Cell Line, Tumor , Cell Survival/immunology , Down-Regulation/immunology , Humans , Male , Up-Regulation/immunology , Vaccination/methods
3.
Nat Prod Res ; 36(22): 5817-5822, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1585378

ABSTRACT

Tissue damage occurs in COVID-19 patients due to nsp3-induced Fas-FasL interaction/TNF-related apoptosis. Presently, possible therapeutic-drug, nigellidine against was screened by bioinformatics studies COVID-19. Atomic-Contact-Energy (ACE) and binding-blocking effects were explored of nigellidine (Nigella sativa L.) in the active/catalytic sites of viral-protein nsp3 and host inflammatory/apoptotic signaling-molecules Fas/TNF receptors TNFR1/TNFR2. A control binding/inhibition of Oseltamivir to influenza-virus neuraminidase was compared here. In AutoDock, Oseltamivir binding-energy (BE) and inhibition-constant (KI) was -4.12 kcal/mol and 959.02. The ACE values (PatchDock) were -167.02/-127.61/-124.91/-122.17/-54.81/-47.07. The nigellidine BE/KI with nsp3 was -7.61 and 2.66, respectively (ACE values were -221.40/-215.62/-113.28). Nigellidine blocked FAS dimer by binding with a BE value of -7.41 kcal/mol. Its strong affinities to TNFR1 (-6.81) and TNFR2 (-5.1) are demonstrated. Our present data suggest that nigellidine may significantly block the TNF-induced inflammatory/Fas-induced apoptotic death-signaling in comparison with a positive-control drug Oseltamivir. Further studies are necessary before proposing nigellidine as medical drug.


Subject(s)
COVID-19 Drug Treatment , Cuminum , Nigella sativa , Humans , Receptors, Tumor Necrosis Factor, Type I/chemistry , Receptors, Tumor Necrosis Factor, Type I/metabolism , Receptors, Tumor Necrosis Factor, Type I/pharmacology , Receptors, Tumor Necrosis Factor, Type II/metabolism , Receptors, Tumor Necrosis Factor, Type II/pharmacology , Nigella sativa/metabolism , Cuminum/metabolism , SARS-CoV-2 , Oseltamivir/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Apoptosis , Seeds/metabolism , Virus Replication
4.
J Pers Med ; 11(12)2021 Dec 03.
Article in English | MEDLINE | ID: covidwho-1554968

ABSTRACT

Healthy and controlled immune response in COVID-19 is crucial for mild forms of the disease. Although CD8+ T cells play important role in this response, there is still a lack of studies showing the gene expression profiles in those cells at the beginning of the disease as potential predictors of more severe forms after the first week. We investigated a proportion of different subpopulations of CD8+ T cells and their gene expression patterns for cytotoxic proteins (perforin-1 (PRF1), granulysin (GNLY), granzyme B (GZMB), granzyme A (GZMA), granzyme K (GZMK)), cytokine interferon-γ (IFN-γ), and apoptotic protein Fas ligand (FASL) in CD8+ T cells from peripheral blood in first weeks of SARS-CoV-2 infection. Sixteen COVID-19 patients and nine healthy controls were included. The absolute counts of total lymphocytes (p = 0.007), CD3+ (p = 0.05), and CD8+ T cells (p = 0.01) in COVID-19 patients were significantly decreased compared to healthy controls. In COVID-19 patients in CD8+ T cell compartment, we observed lower frequency effector memory 1 (EM1) (p = 0.06) and effector memory 4 (EM4) (p < 0.001) CD8+ T cells. Higher mRNA expression of PRF1 (p = 0.05) and lower mRNA expression of FASL (p = 0.05) at the fifth day of the disease were found in COVID-19 patients compared to healthy controls. mRNA expression of PRF1 (p < 0.001) and IFN-γ (p < 0.001) was significantly downregulated in the first week of disease in COVID-19 patients who progressed to moderate and severe forms after the first week, compared to patients with mild symptoms during the entire disease course. GZMK (p < 0.01) and FASL (p < 0.01) mRNA expression was downregulated in all COVID-19 patients compared to healthy controls. Our results can lead to a better understanding of the inappropriate immune response of CD8+ T cells in SARS-CoV2 with the faster progression of the disease.

5.
J Mol Med (Berl) ; 100(2): 285-301, 2022 02.
Article in English | MEDLINE | ID: covidwho-1505851

ABSTRACT

The risk of severe COVID-19 increases with age as older patients are at highest risk. Thus, there is an urgent need to identify how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) interacts with blood components during aging. We investigated the whole blood transcriptome from the Genotype-Tissue Expression (GTEx) database to explore differentially expressed genes (DEGs) translated into proteins interacting with viral proteins during aging. From 22 DEGs in aged blood, FASLG, CTSW, CTSE, VCAM1, and BAG3 were associated with immune response, inflammation, cell component and adhesion, and platelet activation/aggregation. Males and females older than 50 years old overexpress FASLG, possibly inducing a hyperinflammatory cascade. The expression of cathepsins (CTSW and CTSE) and the anti-apoptotic co-chaperone molecule BAG3 also increased throughout aging in both genders. By exploring single-cell RNA-sequencing data from peripheral blood of SARS-CoV-2-infected patients, we found FASLG and CTSW expressed in natural killer cells and CD8 + T lymphocytes, whereas BAG3 was expressed mainly in CD4 + T cells, naive T cells, and CD14 + monocytes. In addition, T cell exhaustion was associated with increased expression of CCL4L2 and DUSP4 over blood aging. LAG3, PDCD1, TIGIT, VCAM1, HLA-DRA, and TOX also increased in individuals aged 60-69 years old; conversely, the RGS2 gene decreased with aging. We further identified a distinct gene expression profile associated with type I interferon signaling following blood aging. These results revealed changes in blood molecules potentially related to SARS-CoV-2 infection throughout aging, emphasizing them as therapeutic candidates for aggressive clinical manifestation of COVID-19. KEY MESSAGES: • Prediction of host-viral interactions in the whole blood transcriptome during aging. • Expression levels of FASLG, CTSW, CTSE, VCAM1, and BAG3 increase in aged blood. • Blood interactome reveals targets involved with immune response, inflammation, and blood clots. • SARS-CoV-2-infected patients with high viral load showed FASLG overexpression. • Gene expression profile associated with T cell exhaustion and type I interferon signaling were affected with blood aging.


Subject(s)
Aging/blood , Blood Proteins/analysis , COVID-19/genetics , SARS-CoV-2/pathogenicity , Transcriptome , Adult , Aged , Aging/genetics , Blood/metabolism , Blood Chemical Analysis , Blood Proteins/genetics , Blood Proteins/metabolism , Blood Vessels/metabolism , Blood Vessels/virology , COVID-19/blood , COVID-19/immunology , COVID-19/physiopathology , Cardiovascular Physiological Phenomena/genetics , Cardiovascular System/metabolism , Cardiovascular System/virology , Cohort Studies , Female , Genetic Association Studies , Humans , Immunity, Innate/genetics , Male , Middle Aged , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL